Differential Equations

Homework 7

Due Mar. 20, 2024, 9:59 am

Note:

- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your HW.
- Several random problems will be graded (1 point each).

1. Determine whether the pairs of functions are linearly independent or linearly dependent on the real line

$$
\begin{gathered}
f(x)=\pi, \quad g(x)=\cos ^{2} x+\sin ^{2} x \\
f(x)=\pi, g(x)=\cos ^{2} x+\sin ^{2} x=1 \\
g(x)=\frac{1}{\pi} f(x)
\end{gathered}
$$

Linearly dependent
2. Determine whether the pairs of functions are linearly independent or linearly dependent on the real line

$$
f(x)=1+x, \quad g(x)=1+|x|
$$

If $x \geq 0|x|=x$, then $f(x)=1+x, g(x)=1+x$, they are linearly dependent If $x<0|x|=-x$, then $f(x)=1+x, g(x)=1-x$, they are linearly independent On real line, they are linearly independent
3. Determine whether the pairs of functions are linearly independent or linearly dependent on the real line

$$
\begin{gathered}
f(x)=\sin ^{2} x, \quad g(x)=1-\cos 2 x \\
f(x)=\sin ^{2} x, g(x)=1-\cos 2 x=2 \sin ^{2} x
\end{gathered}
$$

They are linearly dependent
4. Find general solutions of the differential equations
(a)

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

Let

$$
\begin{aligned}
y & =e^{r x} \\
y^{\prime} & =r e^{r x} \\
y^{\prime \prime} & =r^{2} e^{r x}
\end{aligned}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{\prime \prime}-3 y^{\prime}+2 y=0 \rightarrow r^{2} e^{r x}-3 r e^{r x}+2 e^{r x}=0 \rightarrow r^{2}-3 r+2=0 \\
(r-2)(r-1)=0 \rightarrow r=1,2 \rightarrow y_{1}=e^{x}, y_{2}=e^{2 x}
\end{gathered}
$$

General solution

$$
y=C_{1} e^{x}+C_{2} e^{2 x}
$$

(b)

$$
y^{\prime \prime}+5 y^{\prime}=0
$$

Let

$$
\begin{aligned}
y & =e^{r x} \\
y^{\prime} & =r e^{r x} \\
y^{\prime \prime} & =r^{2} e^{r x}
\end{aligned}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{\prime}+5 y^{\prime}=0 \rightarrow r^{2} e^{r x}+5 r e^{r x}=0 \rightarrow r^{2}+5 r=0 \\
r(r+5)=0 \rightarrow r=0,-5 \rightarrow y_{1}=e^{0 x}=1, y_{2}=e^{-5 x}
\end{gathered}
$$

General solution

$$
y=C_{1}+C_{2} e^{-5 x}
$$

(c)

$$
2 y^{\prime \prime}-y^{\prime}-y=0
$$

Let

$$
\begin{aligned}
y & =e^{r x} \\
y^{\prime} & =r e^{r x} \\
y^{\prime \prime} & =r^{2} e^{r x}
\end{aligned}
$$

Then, the differential equation becomes

$$
\begin{gathered}
2 y^{\prime \prime}-y^{\prime}-y=0 \rightarrow 2 r^{2} e^{r x}-r e^{r x}-e^{r x}=0 \rightarrow 2 r^{2}-r-1=0 \\
(2 r+1)(r-1)=0 \rightarrow r=1,-\frac{1}{2} \rightarrow y_{1}=e^{x}, y_{2}=e^{-\frac{1}{2} x}
\end{gathered}
$$

General solution

$$
y=C_{1} e^{x}+C_{2} e^{-\frac{1}{2} x}
$$

5. Find a differential equation with a given general solution
(a)

$$
\begin{gathered}
y=c_{1} e^{10 x}+c_{2} e^{-10 x} \\
\rightarrow r=10,-10
\end{gathered}
$$

10 and -10 are roots of

$$
\begin{gathered}
(r-10)(r+10)=0 \\
r^{2}-100=0
\end{gathered}
$$

r^{2} comes from $y^{\prime \prime}$
1 comes from y

Therefore, differential equation should be

$$
y^{\prime \prime}-100 y=0
$$

(b)

$$
\begin{aligned}
y= & c_{1} e^{10 x}+c_{2} e^{100 x} \\
& \rightarrow r=10,100
\end{aligned}
$$

10 and 100 are roots of

$$
\begin{aligned}
& (r-10)(r-100)=0 \\
& r^{2}-110 r+1000=0
\end{aligned}
$$

r^{2} comes from $y^{\prime \prime}$
r comes from y^{\prime}
1 comes from y
Therefore, differential equation should be

$$
y^{\prime \prime}-110 y^{\prime}+1000 y=0
$$

